Effects of variation of inverted-repeat sequences on reactions mediated by the transposase of Tn21.

نویسندگان

  • C Martin
  • J Grinsted
  • F de la Cruz
چکیده

The frequencies of one-ended transposition and normal transposition of derivatives of Tn21 that contain mutant inverted-repeat sequences (IRs) have been measured. In general, there was a linear relationship between the log of the frequency of one-ended transposition of a mutant IR and the log of the frequency of normal transposition of an element flanked by a wild-type IR at one end and by the mutant IR at the other. This implied that one-ended and normal transposition share the rate-limiting step that determines the frequency of transposition and that both IRs are involved in the rate-limiting step in normal transposition. Surprisingly, it was found that only the outer 18 base pairs of the IR of Tn21 engaged accurately in both one-ended and normal transposition, at about 1% of the frequency of the wild-type IR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification in the human genome of mobile elements spread by DNA-mediated transposition.

We have identified in the human genome two families of mobile elements possessing the sequence characteristics of transposons that move directly from DNA to DNA rather than requiring the reverse transcription of an RNA intermediate. One type of element is closely related to the autonomous transposable element, mariner, and comprises a coding region for a transposase protein flanked by short ter...

متن کامل

Biochemical Characterization and Comparison of Two Closely Related Active mariner Transposases

Most DNA transposons move from one genomic location to another by a cut-and-paste mechanism and are useful tools for genomic manipulations. Short inverted repeat (IR) DNA sequences marking each end of the transposon are recognized by a DNA transposase (encoded by the transposon itself). This enzyme cleaves the transposon ends and integrates them at a new genomic location. We report here a compa...

متن کامل

Assembly of the mariner Mos1 synaptic complex.

The mobility of transposable elements via a cut-and-paste mechanism depends on the elaboration of a nucleoprotein complex known as the synaptic complex. We show here that the Mos1 synaptic complex consists of the two inverted terminal repeats of the element brought together by a transposase tetramer and is designated paired-end complex 2 (PEC2). The assembly of PEC2 requires the formation of a ...

متن کامل

Structural Basis for the Inverted Repeat Preferences of mariner Transposases*

The inverted repeat (IR) sequences delimiting the left and right ends of many naturally active mariner DNA transposons are non-identical and have different affinities for their transposase. We have compared the preferences of two active mariner transposases, Mos1 and Mboumar-9, for their imperfect transposon IRs in each step of transposition: DNA binding, DNA cleavage, and DNA strand transfer. ...

متن کامل

Conservation of Palindromic and Mirror Motifs within Inverted Terminal Repeats of mariner-like Elements.

The transposase of the mariner-like elements (MLEs) specifically binds as a dimer to the inverted terminal repeat of the transposon that encodes it. Two binding-motifs located within the inverted terminal sequences (ITR) are therefore recognized, as previously indicated, by biochemical data obtained with the Mos1 and Himar1 transposases. Here, we define the motifs that are involved in the bindi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 171 7  شماره 

صفحات  -

تاریخ انتشار 1989